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Abstract

The rotational behaviour of circular objects is modelled using a two-dimensional ®nite element simulation. We present results for linear

and non-linear viscous rheologies and explore parameter space for the rheology contrast between object and matrix, h , and for object size

relative to the shear zone width, L. For high h , our results con®rm analytical descriptions for L! 0 in that the rotation rate of the object is

half of the bulk shear strain rate. However, we show that for 0.1 . L , 0.9, the rotation rate as a function of L can have a minimum, a

maximum, or it can decrease or increase, depending on the stress exponent and h . In fact, for some rheologies, the rotation rate may decrease

to ,0.3 of the shear strain rate at intermediate L < 0.5 ( < 20% area of porphyroblast in thin section).

These counter intuitive results have important consequences for the interpretation of the rotational behaviour of minerals in deforming

rocks. For example, in rocks where garnet constitutes a volumetrically signi®cant proportion of the bulk rock, the effective shear zone

boundaries may be given by neighbouring crystals corresponding to intermediate L as described here. Thus, the interpretation of the rotation

rate of crystals in such rocks can only be performed if the distance to the effective system boundaries is known. q 2001 Elsevier Science Ltd.

All rights reserved.

1. Introduction

The rotational behaviour of rigid objects in a less viscous

matrix during deformation has been studied by a number of

authors (e.g. Rosenfeld, 1970; Ghosh and Ramberg, 1976;

Schoneveld, 1977; Bell and Johnson, 1990; Hayward, 1992;

Visser and Mancktelow, 1992; Williams and Jiang, 1999;

Ilg and Karlstrom, 2000). This great interest stems from the

fact that an understanding of the rotational behaviour may

provide handles on two important geological problems: (i)

the understanding of the relationship between the rotation

and the growth rate of minerals may be a useful tool to

estimate the strain rate of rocks that deformed during meta-

morphism (e.g. Christensen et al., 1994) and (ii) the under-

standing of the interplay between growth and rotation rate of

minerals in a deforming matrix helps to understand non-

coaxial fabric development. This is because there is

evidence that the disorientation of a homogeneous fabric

around rigid objects depends on the size and orientation of

these objects (Passchier, 1987). Garnets are the most com-

monly studied crystals because: (i) their rotational beha-

viour is relatively simple because of their cubic symmetry

and their strong rheology, (ii) they grow in many common

rocks syntectonically during prograde metamorphism at

conditions typical of Barrovian metamorphism, and (iii)

because garnets appear to preserve inclusion trails very

well. Such garnets are well-known as snowball garnets

(Fig. 1a) and lend themselves beautifully to the investiga-

tion of the rotational behaviour of minerals in natural rocks.

However, there has been some controversy about the

interpretation of rotational behaviour of garnets in a deform-

ing matrix as seemingly evident from spiral-shaped inclu-

sion trails. For example, the school of Bell has argued that

the foliation in the matrix rotates before being overgrown by

the porphyroblast (e.g. Bell et al., 1992a,b; Johnson and

Bell, 1996; Hickey and Bell, 1999); while many others

have argued that inclusion trails really do record the rotation

of porphyroblasts during deformation (e.g. Schoneveld,

1977; Williams and Schoneveld, 1981; Passchier et al.,

1992; Mancktelow and Visser, 1993). Bell (1985) suggested

that porphyroblasts do rotate during simple shear deforma-

tion if the shear zone boundaries remain a ®xed distance

apart, but argued that no spiral inclusion trails form in

such environments. He argues that the formation of spiral

inclusion trails is limited to environments where shortening

across the shear zone boundaries occurs (Bell et al., 1989).

Despite this controversy, there have only been few

hydrodynamical and numerical studies that have actually
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investigated the rotational behaviour of objects as a function

of various geologically relevant parameters (Masuda and

Ando, 1988; Masuda and Mochizuki, 1989; Bjornerud and

Zhang, 1994). In this paper we expand on these studies by

investigating the rotational behaviour of circular objects as a

function of (i) the size of the object relative to the shear zone

boundaries and (ii) a range of ®nite rheology contrasts

between object and matrix.

Our interest in these particular two aspects stems from the

following: The object size is of relevance because in many

garnet-bearing rock types, individual garnet crystals do not

lie isolated in an in®nite matrix. Garnet porphyroblasts often

make up a signi®cant proportion of the rock with the

diameter of individual garnet crystals being of the same

order as the distance between crystals (Fig. 1b). In such

rocks, the ratio of size to distance between porphyroblasts

has been shown to be an important parameter in¯uencing

the stress concentration in the matrix (Handy, 1990) and it

seems intuitive that the rotation rate of a given garnet crystal

will also depend on this interaction. In short, neighbouring

crystals may behave as system boundaries enhancing or

hindering the rotation rate of a given crystal.

The rheology contrast is of relevance because many

minerals are not in®nitely stronger than their matrix. This

is widely known from deforming feldspars, micas and other

porphyroblasts (Passchier and Trouw, 1996), but even

garnets are thought to behave in a ductile fashion at high

grade conditions (Ji and Martignole, 1994, 1996). For

example, Kleinschrodt and McGrew (2000) compared the

deformation behaviour of garnet, quartz and feldspar and

showed that the differences in ¯ow strength are low enough

at high grade conditions (850 ^ 508C); so that garnets do

deform, depending on the matrix being dominated by feld-

spar or quartz. However, the observation of ductily deform-

ing garnets has been disputed (den Brok and Kruhl, 1996;

Azor et al., 1997). Regardless, as rheological data for garnet

are practically unknown, we believe that it is justi®ed to

investigate rotational behaviour as a function of ®nite

rheology contrasts (see also Tenczer et al., 2000). In this

context we note that many modelling studies have assumed

that a rheology contrast of 100 between object and matrix is

suf®cient to approximate the description of in®nitely rigid

objects (e.g. Bons et al., 1997) and we will show that this

need not be suf®cient for some problems.

1.1. Analytical description of rotationÐa review

The rotation rate of an in®nitely rigid, elliptical object in

an in®nite matrix of a Newtonian viscous rheology can be

described analytically. In two dimensions and during ideal

simple shear it is described by:

_v �
_g R2cos2v 1 sin2v
� �

R2 1 1
�1�

(Jeffrey, 1922; Ghosh and Ramberg, 1976), where _v is the

rate of rotation of the object; _g is the shear strain rate in the

far ®eld given by the time derivative of g � tan (c) where c
is the angular shear strain (Fig. 2). R is the length ratio of

long axis to short axis of the object and v is the angle of

rotation of the object relative to the shear zone boundaries.

For circular (or cylindrical) objects, R is equal to 1 and Eq.

(1) reduces to the well-known relationship:

_v � _g

2
�2�

stating that the rotation rate for in®nitely rigid objects is half

that of the shear strain rate (Rosenfeld, 1970). Eq. (2) can be

interpreted in terms of the components of simple shear: in

simple shear, half of the angular shear experienced by the

pole to the shear zone is a result of rigid rotation and the

other half is caused by pure shear at 458 to the shear zone

C. Biermeier et al. / Journal of Structural Geology 23 (2001) 765±776766

Fig. 1. (a) Natural examples for spiral inclusion trails in a garnet from the

Gleinalm complex in the Austroalpine nappe complex, eastern Alps

(Austria). According to Schoneveld (1977), such spiral inclusion trails

(one being highlighted by the white spiral) are an indicator for syn-defor-

mational crystal growth overgrowing quartz-®lled pressure shadows during

rotation. The black dot marks the location of maximum curvature of the

inclusion trail. White arrows indicate matrix mineral grains penetrating the

garnet surface indicating that full coupling between porphyroblast and

matrix existed during deformation. (b) Larger view of the garnet-rich

mica schist specimen of (a). It may be seen that the distance between

crystals is comparable with the crystal diameter. There may be interference

between the rotational behaviour of some crystals because neighbouring

crystals may act as effective shear zone boundaries hindering or enhancing

their rotation rate.



boundary (for a good illustration see: ®g. 13 in Simpson and

De Paor, 1993).

In pure shear, the matrix ¯ow is symmetrical around rigid

objects, so that the object does not rotate because of this

component of the deformation ®eld (Ghosh and Ramberg,

1976; Simpson and De Paor, 1993). The object rotates only

with the rigid body rotational component of the simple shear

deformation.

If the cylindrical object has a ®nite rheology contrast to

the matrix, then the rotation rate of the object is not a simple

function of the far ®eld shear strain rate. Both internal defor-

mation of the object and rigid body rotation relative to the

matrix contribute to the displacement of all points of the

object. While the object itself deforms to retain an elliptical

shape at ®nite strain (Gay, 1968; Shimamoto, 1975), we

consider it impractical to de®ne its overall rotation rate by

the rigid body rotational component of object deformation

(as suggested for elliptical objects by Ramsey and Huber,

1983, p. 22). This is largely because it would make it dif®-

cult to compare the rotation rate of the object relative to that

of the matrix. This is particularly because the rigid body

rotational component of the matrix deformation is different

at all points of the matrix, as our boundary conditions are

chosen not to include the far ®eld (see Section 2, Fig. 3).

Indeed, because we are investigating boundary effects here,

it remains unclear whether the object retains an elliptical

shape at ®nite strain.

For the purpose of this paper we consider an object of

®nite rheology contrast in a medium subjected to a simple

shear strain rate _g . We de®ne the rotation rate of the object

_v as the change of angle per unit time of an axis that lies

within the eigenvector of the velocity gradient tensor of the

far ®eld matrix (the ªfabric attractorºÐthe direction paral-

lel to the shear zone boundary), as this axis does not change

orientation because of deformation in the far ®eld. Thus, the

rotation rate as de®ned here is the rotation rate relative to the

matrix, but we note that this de®nition entails a distortional

component and a rigid body rotational component. We also

de®ne _f , which is the rate of change in angle of an axis

perpendicular to the shear zone (Fig. 2b). _f incorporates

both the angular shear strain rate of the object _c object and the

rotation rate of the object relative to the matrix _v and it may

be written as:

_f � _c object 1 _v : �3�
For small angles, the shear strain rate is virtually equal to

the angular shear strain rate _c object � _gobject and Eq. (3) may

be written as:

_f � _gobject 1 _v : �3a�
If the object is in®nitely harder than the matrix, then _f �

_v and _gobject � 0 and the far ®eld shear strain rate is related

to the rotation rate according to Eq. (2). If the object

is of the same rheology as the matrix, then _v � 0 and

_gobject � _f � _g . In the general case discussed here, the

rotation rate will be of intermediate values: 0 , _v , _f
and 0 , _gobject , _f . It is also true that _v , _g =2 and that

_gobject . _v if the object rheology is only slightly higher

than the matrix and _gobject , _v if the object is much harder

than the matrix.

2. Numerical technique, geometry and boundary
conditions

For the purpose of this paper, we assume that rocks

behave according to the laws of an incompressible linear

or non-linear viscous ¯uid and we investigate their beha-

viour in a plane strain environment. The particle velocity

and ¯ow paths as well as the distribution of the strain and the
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Fig. 3. Schematic illustration showing the velocity ®eld (left) and shear

strain rate (right) around a cylindrical inclusion for two end member rheol-

ogies. The dashed curves show velocity and shear strain rate if there is no

rheology contrast between object and matrix. Then, the velocity gradient

across the object is constant and the shear strain rate is also constant. The

solid curves show velocity and shear strain rate if the object is rigid (i.e. it is

in®nitely harder than the matrix). Then, the velocity gradient inside the

object will be constant. It is half as large as that of the far ®eld matrix

(Eq. (2)). Between the far ®eld matrix and the object contact, there will be a

curved section in the velocity gradient. In the problem discussed here, the

boundary conditions are imposed in this curved section of the velocity ®eld

so that the entire matrix deformation becomes anisotropic.

Fig. 2. Illustration of the components of deformation during simple shear of

a matrix containing a circular object of ®nite rheology and diameter L. The

shear strain of the matrix g is related to the angular shear strain c by

g � tan �c�, but is equivalent to c at the very small angles used here.

The bulk shear strain results in a shear strain of the object gobject and a

rotation of the object relative to the matrix v . Eqs. (2), (3) and (3a) use the

time derivatives of the angles shown here. Note that the lines drawn to mark

the angles of points on the surface of the object are not marker lines, as

maker lines become curved during deformation.



stress ®eld during deformation have been solved using the

two dimensional ®nite element code BASIL (Barr and

Houseman, 1996). In summary, this program solves the

force balance equations in two dimensions. These may be

written as:

2

2cj

tij 1
2

2ci

p � 0 �4�

where the i or j subscripts represent the x- and y-directions

and c is a general spatial coordinate de®ned by i or j. t ij are

the ijth components of the deviatoric stress tensor and p is

pressure. In order to assign deformation to the stresses

obtained from these equations, a constitutive relationship

is assumed in which the components of deviatoric stress

are related to strain rate by the non-linear relationship:

tij � B _E
1
n

21

� �
_e ij: �5�

In this equation _e ij are the components of the strain rate

tensor, _E is the second invariant of the strain rate tensor

and the constant B includes all material- and temperature-

dependent parts of the rheology (England and McKenzie,

1982). Eq. (5) is a general two-dimensional form of a non-

linear relationship between stress and strain rate where n is

the stress or power-law exponent de®ning the non-linearity

and the effective viscosity is assumed to be isotropic with

respect to the strain rate. The strain rate is de®ned in terms

of the x- and y-direction components of velocity u:

_e ij � 1

2

2ui

2cj

1
2uj

2ci

" #
: �6�

Note that _e ij in the far ®eld is equivalent in its value to _g =2
when i ± j. For many geological applications, B in Eq. (5)

has been shown by deformation experiments to depend

inverse-exponentially on temperature (according to the

Arrhenius relationship) and can be described with three

material constants: an activation energy, a pre-exponential

constant and n (e.g. Shelton and Tullis, 1981; Carter and

Tsenn, 1986). From Eq. (5) it may be seen that, when n� 1,

B is the proportionality constant between stress and strain

rate and is called viscosity. Eq. (5) then describes a

Newtonian ¯uid behaviour. When n . 1, the viscosity

depends on strain rate. Then, it is only possible to de®ne

an effective viscosity that is given by the ratio of stress and

strain rate:

h�eff � � B _E
1
n

21

� �
: �7�

In order to de®ne a viscosity contrast, h , between object

and matrix when n . 1, we assume that this is given when

the stresses are equal and can be described by:

h � Bn
: �8�

More detailed justi®cation of Eq. (8) and its derivation

from Eq. (7) is provided by Bons et al. (1997); Tenczer et al.

(2000). n is assumed to be same for object and matrix,

although we acknowledge that other studies have shown

that variation of n between object and matrix can also in¯u-

ence some aspects of the object behaviour (Kenkmann and

Dresen, 1998).

2.1. Meshing and initial geometry

The initial geometry of the grid includes a circular region

which we call ªobjectº with the diameter L centred in a

square box of length 1 (Fig. 4). In the following, the terms

ªtopº, ªbottomº, ªleftº and ªrightº will refer to the co-

ordinate system as shown in Fig. 4. The object was assigned

a rheology contrast h to the matrix according to Eq. (8).

This rheology contrast was explored for h � 100, h � 10

and h � 2 both for n� 1 and n� 3, which was chosen

because many rocks appear to behave roughly according

to this relationship (Tullis et al., 1991). This geometry

was triangulated with a self-triangulation routine using

Delauney triangles. Maximum triangle size and minimum

mesh angles were prescribed so that numerical resolution

was high and stability ensured. The size of the object was

varied between L� 0.1 and L� 0.9, corresponding to an

areal proportion of the circular object in the grid between

,0.8% and ,63%. For much smaller and larger objects, the

numerical solutions became unstable, but the results are

suf®cient as the rotation rate for L! 0 is given by Eq. (2).

The rotation rate at L� 1 is directly controlled by the

boundary conditions and is of no direct interest here. It

was explored by Spry (1963). The rotation rate was calcu-

lated from the angle change that the coordinate x� L/2

and y� 0 undergoes per unit time (Figs. 2 and 4). _f was
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Fig. 4. The ®nite element grid used in the model calculation labelled with

ª®xed plate boundary conditionsº. The shaded region indicates an object of

different rheology from the matrix. The shown object size is L� 0.2. For

smaller inclusions, a mesh with more elements and more nodes along the

circumference of the object was used. The rotation rate of the object was

calculated from the displacement of the coordinate x� L/2 and y� 0.



calculated from the velocity of the coordinate x� 0 and

y� L/2 at time� 0. From this, the shear strain rate of the

object, _gobject, was estimated with Eq. (3a). Progressive

rotation rates at ®nite deformations were not explored.

2.2. Boundary conditions

Numerical simulations were performed for two different

sets of boundary conditions approximating simple dextral

shear in the far ®eld which describe two different geologi-

cally relevant situations. In both sets of boundary condi-

tions, we assumed a horizontal shear velocity at the top

and bottom boundaries. The top boundary is moving with

velocity ux� 1 towards the right and the bottom boundary is

moving with ux�21 towards the left. For the sides of the

grid we assumed ªringº boundary conditions so that the left

and right margins of the grid are assumed to join to form a

continuum. This assumption simulates an in®nite lateral

extent of the shear zone with a repeating inclusion geo-

metry. The two sets of boundary conditions differ with

respect to the assumptions along the top and bottom

boundaries.

In the ®rst set of boundary conditions we assumed rigid

top and bottom boundaries. As such, these boundary condi-

tions are most comparable with the situation in shear-box

experiments, where rigid boundaries on all sides exist, or

with natural shear zones that are bound by rigid plates. We

will call these boundary conditions below ª®xed plate

boundary conditionº.

With the second set of boundary conditions we have

simulated shear zones with boundaries that are allowed to

bend outwards as a function of the stresses arising in the

grid. For this, we de®ned a constant normal stress at the top

and bottom boundaries, rather than zero velocity. We will

call these boundary conditions ªconstant stress boundary

conditionº.

3. Results

Results of the model calculations are shown for the rota-

tion rate of the object, _v , its shear strain rate, _gobject and the

sum of both as given by _f . All three components are shown

in Fig. 5 for ®xed plate boundary condition and in Fig. 6 for

constant stress boundary conditions. Results are normalised

to the shear strain rate of the matrix, _g . As we can see by

comparing these two ®gures, there is no simple relationship

between the viscosity contrast, stress exponent and the

normalised object size. However, the results can be grouped

into four qualitatively different results, depending on the

trend of _v and _gobject as a function of L. These are:

1. _v and _gobject are more or less constant and independent of L.

2. _v decreases with increasing L but _gobject is independent

of L.
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Fig. 5. Results of the model calculations for ®xed plate boundary conditions. All diagrams show the rotation rate _v , (dotted lines); the shear strain rate of the

object _gobject, (dashed lines) and the sum of both _f (continuous lines), normalised to the shear strain rate of the matrix, _g . These parameters are shown as a

function of object size L which was sampled at 17 discrete intervals between 0.1 , L . 0.9. Viscosity contrasts and stress exponents are labelled in each

diagram; the three different rates shown are only labelled in (a).



3. _v increases and _gobject decreases with increasing L.

4. _v decreases and _gobject increases with increasing L.

These four different result groups depend on the stress

exponent and viscosity contrast, but relate differently to n

and h if the boundary conditions are different. It is therefore

necessary to discuss the different result groups individually

for the two sets of boundary conditions.

3.1. Fixed plate boundary condition

These results are easiest read by ®rst analysing the case of

Newtonian ¯ow (Fig. 5a±c); in particular the case of very

hard objects (Fig. 5a). There, it can be seen that _v � 0:5 for

small L, as stated by Eq. (2). Because of the hard rheology of

the object, _gobject is near zero for most L and only trends

towards 1 near L� 1 where the object is forced to deform by

the boundaries. There _v trends to zero. For even harder

objects, the bend of the curve for _gobject becomes even tighter

near L� 1. However, interestingly, the rotation rate as a

function of L decreases long before the shear strain rate

begins to increase.

With decreasing viscosity contrast (weaker objects), the

rotation rate decreases overall and the shear strain rate of the

object increases (Fig. 5b and c). At h � 2 the rotation rate is

around 0.2 for most values of L. At a viscosity contrast of 1

(not illustrated) the rotation rate _v would go to zero and the

shear strain rate to one for all L. In contrast to Fig. 5a, where

the rotation rate and shear strain rate have different shapes

( _v decreases with L while _gobject stays more or less constant),

the shape of the curves becomes more similar at lowerh (albeit

of opposite sign). Thus, _f , being the sum of _v and _gobject,

decreases with L at h @ 10, but increases with L at h , 10.

Results for non-linear rheologies (Fig. 5d±f) are only

qualitatively similar to the Newtonian behaviour. With

respect to their details, they show interesting differences.

For example, the rotation rate decreases in a much more

linear fashion with increasing L for all viscosity contrasts

(Fig. 5d±f). Also, _gobject is always larger and _v is always

smaller than in Newtonian ¯ow. This difference is particu-

larly well-pronounced at intermediate h . An interesting

situation is developed for the case of very hard objects at

very low L (Fig. 5d). There, the rotation rate is smaller than

0.5 when n . 1. The qualitative change of the slope of _f as

a function of h is developed for both linear and non-linear

rheologies. However, at intermediate h (Fig. 5e at the tran-

sition from a negative to a positive slope of this curve), the

curve does not become ¯at as in the linear case, but becomes

bowl-shaped and roughly symmetric about L� 0.6. The

pronounced minimum of _f (and also _gobject) at L� 0.6

(Fig. 5e) indicates that the shear zone width has a signi®cant

in¯uence on the rotation rate of objects, even when the

object is removed from the boundaries by a signi®cant

proportion of L.

3.2. Constant stress boundary condition

In general, the results forconstant stress boundary conditions
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(Fig. 6) show that all rate parameters are not such a strong

function of L as is the case of the ®xed plate boundary

conditions (Fig. 5). This is because the material is not forced

to ¯ow around the object in a restricted shear zone of

constant width, but the boundaries may adjust and bend

outwards to maintain constant normal stress along them.

Thus, the shear and normal components of stress and strain

in the y-direction are larger under constant stress boundary

conditions than under ®xed plate conditions. This leads

under linear viscous ¯ow to constant values of _gobject, _f
and _v over a large range of L. For example, in contrast to

Fig. 5a, Fig. 6a shows that _v is near 0.5 for practically all L

and the shear strain rate _gobject is negligible. Clearly, as for

all ®gures, _v goes to zero and _gobject to one at L� 1 but the

change of both values occurs much closer to L� 1 than in

Fig. 5a.

At lower viscosity contrasts (Fig. 6b and c), the rotation

rate decreases and the shear strain rate increases, but both

parameters remain constant for a larger range of L than for

the corresponding parameter range on Fig. 5a±c. Because of

this, _f does not change qualitatively as on Fig. 5a±c, but

only increases in slope with decreasing h .

For n� 3 (Fig. 6d±f), _v shows a maximum and _gobject a

minimum at intermediate L for all h . This is completely

different from all other results presented here, where

the highest rotation rate has been always been given by

the lowest object sizes! Here, the highest rotation rate

is given at about L� 0.5. At higher h , the maximum of _v
shifts to lower L. For smaller and for larger objects, _gobject

increases and _v decreases. The rotation rate at low L

departs signi®cantly from the case of the ®xed plate bound-

ary condition shown in Fig. 5 and also from its value for

Newtonian ¯ow as given by Eq. (2). For example, for very

hard objects, the rotation rate at small L is only about 0.4

(Fig. 6d).

3.3. Interpretation of results

The curves for _v , _gobject and _f shown in Figs. 5 and 6

illustrate a number of counter-intuitive features that need to

be explained. In particular these are: (i) why does the rota-

tion rate and _f decrease with increasing L while _gobject

remains constant for hard objects and ®xed plate boundary

conditions at all n (result group 2; Fig. 5a,d)? (ii) why does

_v increase with increasing L (up to about L , 0.5) for

constant stress boundary conditions and non-linear viscos-

ities (result group 3; Fig. 6d±f)? (iii) why, at very high

viscosity contrasts, is _v smaller than 0.5 for L! 0 in non-

linear rheologies, regardless of the boundary conditions?

The other result groups (group 4; Fig. 5b,c,e,f and group

1; Fig. 6a±c) are straightforward to interpret: the decrease of

_v with increasing L at decreasing viscosity contrasts and is a

mere function of the increasing dominance of deformation

of larger objects when they are soft. These results are intui-

tively explained and will not be discussed further here.

Question (i) is relatively easy to explain. For small inclu-

sions (Fig. 5a), there is a mostly linear velocity gradient

between the top and the bottom boundary. For larger L,

the velocity gradient becomes smaller on the sides of the

inclusion and becomes larger in the narrow seams between

the object and the boundaries (Fig. 7). Effectively, the object

starts acting like a rigid band in the middle of the grid, while

the areas near the top and bottom boundaries partition the

strain. Small shear zones start forming around the object.

This is illustrated in Fig. 7a where it can be seen that the x-

velocity (ux) decreases towards the centre of the grid more

rapidly for large objects, than for small objects. Fig. 7b

illustrates this by plotting the shear strain rate, which is

largely the x-velocity gradient in the y-direction, as it may

be interpreted from Fig. 7a. Small differences between Fig.

7b and the slope of the curves in Fig. 7a arise from the
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Fig. 7. (a) x-Velocities and (b) shear strain rate (calculated from Eq. (6)) at the margin of the grid (at x� 0.5) between y� 0.5 and y�20.5. The diagram

explains the changes in rotation rate of hard objects (h � 100) as a function of L as seen in Fig. 5 for the ®xed plate boundary conditions (result group 2).

Curves are labelled for different values of L. For comparison, one example for L� 0.8 is also shown for the constant stress boundary condition (dotted line).

Note that for large L the shear strain rate becomes larger on the sides of the object.



velocity gradient contribution in the x-direction to the shear

strain rate, according to the de®nition of shear strain rate in

Eq. (6).

This explanation holds for linear and non-linear viscous

rheologies (compare Fig. 5a with d) and the effect becomes

less signi®cant for lower viscosity contrasts (compare Fig.

5a with b and c). When the boundary conditions are changed

to constant stress conditions, the key feature of result group

2 vanishes as the velocity above and below the object is

allowed to partition signi®cantly into an x- and a y-component

(dotted lines in Fig. 7). Thus, the velocity gradient remains

much more constant across y and the rotation rate is much

less dependent on L. For any given L, _v is therefore larger

for constant stress boundary conditions than for ®xed plate

conditions.

Question (ii) is not so easily explained. The maximum of

_v at intermediate L (Fig. 6d) is the consequence of the

interplay of two different processes. Both processes are

related to an increasing effect of the boundary conditions

on the rotation rate of the object and occurs in all diagrams

of Fig. 6, but it is more pronounced for non-linear rheologies

(bottom row in Fig. 6). The increase of _v up to about

L� 0.5 is caused by an increasing y-component of the

velocity ®eld imposed by the boundaries. The decrease of

_v at L . 0.5 is caused by the same effect that explains result

group 2 (question (i), last paragraph, Fig. 7); that is: the

partitioning of the strain into small shear zones on the

sides of the object. The fact that the boundary conditions

impose an additional y-velocity causing higher rotation rates

with higher L is illustrated by comparing Fig. 8a±c. Fig. 8b

shows that Ð because the boundaries are allowed to bend

outwards Ð the imposed boundary±parallel velocity has

both an x- and a y-component. The y-component of this

velocity is clearly larger when the inclusion is large, rather

than when it is small, because the boundaries need to bend

further out to maintain constant stress (compare Fig. 8b and

c; the outwards bending is larger in Fig. 8b). This is quanti-

®ed in Fig. 8e and f and is the cause for higher rotation rates

at higher L. The difference in rotation rate between ®xed

plate and constant stress boundary conditions at any given

L is caused by the same effect (compare Fig. 8d and e or Fig.

5d and Fig. 6d). In Fig. 8d the y-component of the velocity

®eld along the circumference of the object is much smaller

than in Fig. 8e because in the former the top and bottom of

the shear zone are ®xed in y. Thus, for both cases, the

decrease of _v is caused by a decrease of imposition of a

y-component of velocity: in the case of Fig. 8f (in compari-

son with Fig. 8e) this is because the object is further away

from the boundary, and in the case of Fig. 8d (in comparison

with Fig. 8e) it is because the boundary condition is changed.

For L . 0.5, the rotation rate decreases because the effect

of strain partitioning wins over the effect discussed

above. This becomes clear from Fig. 8g±i, where the same

effect discussed in Fig. 7 may be seen in terms of contoured

x-velocities.

The answer to question (iii), the cause for rotation rates

_v , 0.5 for L! 0 (see Figs. 5d±f and 6d±f), lies in the non-

linearity of the rheological behaviour, because it does not

occur at n� 1. However, Masuda and Mizuno (1996)

concluded that the rotation rates of in®nitely rigid objects

at L� 0 is _v � 0.5 for n� 1±5. Thus, we suggest that our

result lies in the fact that a rheology contrast of h � 100 is

insuf®cient to approximate the behaviour of rigid objects.

This is con®rmed by the fact that _gobject has appreciable

values at L! 0. In fact, it may be seen that _gobject decreases

with increasing L. This decrease is probably a function of

the effect that the boundary conditions in¯uence the rotation

rate the most at intermediate L. While we suspend our full

interpretation of this question, we emphasise the importance

of this result: In non-linear viscous materials the rotation

rate of objects may be lower than half of the shear strain

rate, even if they are of the order of 100 times stronger than

the matrix.

4. Discussion

The model calculations presented and interpreted

above have some important implications for the inter-

pretation of rotation rates of porphyroblasts in rocks.

However, they have been performed making a number of

simplifying assumptions. It is therefore necessary to dis-

cuss these limitations before going onto some geological

interpretations.
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Fig. 8. Schematic sketches as well as x-velocities and y-velocities for some

examples of ®xed plate and constant stress boundary conditions from Figs.

5d and 6d. The diagram helps to explain the increase in rotation rate with

increasing L (result group 3). See text for details.



4.1. Limitations of geological application

Cylindrical geometry: the results presented here were

performed in two dimensions and can therefore only be

applied directly to cylindrical objects, for example needle-

shaped mineral grains. However, in geological studies,

garnets (with an approximately spherical shape) are best

for inferring rotation rates for reasons outlined in the intro-

duction of this paper. While we are con®dent that all effects

hindering or enhancing the rotation rates as discussed in the

last section are also relevant to spherical objects, the L of the

two-dimensional objects discussed above cannot be trans-

lated directly into the diameter of a spherical grain as

measured in thin section. Rather, L must correspond to

some average diameter measured perpendicular to the rota-

tion axis and averaged over the length of the rotation axis. In

a sphere, this is given by L < Dp /4, where D is the diameter

of the sphere. Thus, we suggest that the rotation rate of

spherical objects may be approximated by our calculations

using an L < 0.78D. For the relationship between sphere

diameter and apparent diameter in thin section we refer to

the method of Ehlers et al. (1994).

Finite deformation: the results presented above are valid

only for an incremental time step at the onset of deforma-

tion. Clearly, the rotation rates will change dramatically as

soon as the object becomes non-circular (see Ghosh and

Ramberg, 1976; Passchier, 1987; Simpson and De Paor,

1993). Thus, our results may be valid for ®nite deformation

only for hard objects (like those approximated in Figs 5a,d

and 6a,d). Therefore, our geological discussion below will

focus only on rotation rate changes as a function of L for

objects with very high rheology contrasts to the matrix.

Object±matrix coupling: in our calculations, we have

assumed a continuum between object and matrix so that

there is 100% coupling between inclusion and matrix. We

note that Kenkmann and Dresen (1998) showed that the

reduction of coupling has a great in¯uence on the differen-

tial stress distribution and therefore also probably on the

rotation rate. While we acknowledge that decoupling

between porphyroblasts and matrix has been observed in

rocks (Odonne, 1994), we note that in many garnet crystals

containing spiral inclusion trails, matrix crystals penetrate

the surface of the rotating crystal (white arrows in Fig. 1a)

so that full coupling is ensured.

Deformation mechanism: our results were obtained for an

incompressible viscous material and no consideration was

given to elastic deformation or other grain-scale deforma-

tion processes. As we know from deformation maps for

different minerals there are a lot of grain and phase bound-

ary processes in¯uencing the occurring strain rate and stress

values, for example strain hardening, metamorphism of the

matrix and many others. While it goes far beyond the scope

of this paper to explore the in¯uence of such mechanisms,

we note that our results may only be used for a meaningful

interpretation if the assumption of a viscous material is

approximated.

4.2. Geological relevance

Despite the limitations discussed in the last section, we

believe that our results have some relevance to the interpre-

tation of rotation rates of porphyroblasts in rocks. In parti-

cular, we will focus below on the fact that the rotation rate of

circular porphyroblasts in a viscous matrix need not stay

constant but may change as a function of L. This very

general result has been true for all rheology contrasts, all

power law exponents and is independent of the boundary

conditions explored here (all curves on Figs. 5 and 6 change

as a function of L). Thus, while refraining from a quantita-

tive interpretation of Figs. 5 and 6 in real rocks, we will use

this general result to present some warnings about the inter-

pretation of rotating porphyroblasts.

Shear zones in rocks are rarely of the width of individual

crystals contained in them. However, in coarse-grained

garnet±mica schists (in which the distance between indivi-

dual crystals is comparable with the crystal size (e.g. Fig.

1b)), neighbouring garnet crystals may act as ªeffective

shear zone boundariesº to a particular garnet of which the

rotational behaviour may be under consideration. 20% of

garnet porphyroblast per area of thin section is common to

many coarse-grained pelitic rocks so that the effect of neigh-

bouring crystals cannot be excluded (in our grid with the

side length 1, the areal proportion of object per area is given

by (L/2)2p so that L between zero and 1 corresponds to an

areal proportion of garnet in a thin section between 0 and

78%). As a consequence, the rotational behaviour of indi-

vidual crystals may vary dramatically, depending on, for

example, grain size or relative growth rates. As crystals in

many coarse-grained garnet mica schists grow during a

continuous PT-deformation evolution of the rock, L may

change during the evolution of the PT path. Thus, the rota-

tion rate may also change over time, even if the overall

deformation regime remains constant. As a result, inclusion

trails in porphyroblasts of different size, or in porphyroblasts

that nucleated at different time steps of the same PT evolu-

tion may contain very differently-shaped inclusion trails. In

fact, in rocks where some garnet crystals ultimately touch, it

is conceivable that the entire evolution of rotation rate from

L� 0 to L� 1 is seen by some crystals.

As an example, reconsider the marked inclusion trail in

Fig. 1a. This trail has its maximum curvature at the location

marked by the black dot. Assuming a constant radial growth

rate (note that this assumption implies a decreasing volu-

metric growth rate) this might be interpreted as a maximum

in the rotation rate and ultimately as a maximum in the shear

strain rate of the rock. Our calculations show that this maxi-

mum in rotation rate may merely re¯ect a growth path from

L < 0.1 towards L < 0.8 on Fig. 6d or e. Clearly, such inter-

pretations may only be made if the radial growth rate as a

function of time is understood. This involves a careful petro-

logical investigation.

L may not only increase during crystal growth in a

constant width shear zone (discussed in the last paragraph),
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but L may also increase if the crystal size stays constant and

the shear zone narrows in width. This may be given in a

general shear environments, for example during folding

where limb attenuation and hinge thickening may cause

an additional effect in¯uencing the rotation rate of crystals,

in addition to the changes of shear strain rate in different

geometric positions around a fold (Visser and Mancktelow,

1992). In this sense, the pure shear component of general

shear may have an indirect in¯uence on the rotation rate by

changing the effective shear zone width. Interestingly, this

interpretation is in support of Bell et al. (1989), in that the

rotation rate of garnet crystals may be slowed in general

shear environments where the convergence of the shear

zone boundaries causes an increase of L from near zero to

intermediate values.

When comparing Figs. 5 and 6 we have shown that the

boundary conditions have an important in¯uence on the

rotation rate. Thus, when attempting to determine rotation

rates from natural examples, it is crucial to understand the

relevant boundary conditions. How the difference between

the two sets of boundary conditions investigated here may

be recognised in the fabric of rocks is illustrated in Fig. 9.

There, the velocity ®eld in and around objects with a rheol-

ogy contrast to the matrix of h � 100 is plotted using an

intermediate L� 0.6 where the difference between the two

boundary conditions is large (compare Fig. 5d and Fig. 6d)

and the rotation rate for the constant stress boundary condi-

tion is near its maximum (Fig. 6d). As the shear strain rate

will be the principle cause for fabric development (i.e.

velocity gradients in the x- and y-directions; see Eq. (6)),

this velocity ®eld may be used to infer the fabric that

may be seen in a rock (see also Fig. 7) (for other causes

of fabric development see Lister and Williams, 1983). Note

that Fig. 9 should not be misinterpreted as the velocity ®eld

is drawn relative to the centre of each of nine porphyroblasts

in this ®gure (separated by continuous lines). Thus, rever-

sals in the velocity ®eld across these lines are only apparent.

Nevertheless, it may be seen that the principle fabric

development will be parallel to the x-coordinate as there

is practically no gradient in the length of the velocity vectors

in the x±direction.

Fig. 9 shows that we can decide from the shape of

the foliation around porphyroblasts which boundary con-

ditions are relevant. When constant stress boundary con-

ditions prevail, an anastomosing fabric will be developed

around porphyroblasts. No straight fabric elements will

be developed (Fig. 9a). When ®xed plate boundary condi-

tions prevail, the strain and fabric development will be parti-

tioned largely into straight ªsub-shear zonesº between

porphyroblasts and there will be very little strain (and

shear strain rate) behind and in front of the porphyro-

blasts (Fig. 9b). Effectively, a ªlayeredº system should

be observed where the porphyroblasts hinder the fabric

development suf®ciently so that the strain is accommodated

in shear zones between them. In general, the rotation rate of

crystals in the example of Fig. 9a will be larger than in that

of Fig. 9b.

5. Conclusion

In conclusion, our study has shown that the rotation rate

of cylindrical objects in a simple shear environment varies

as a function of the object size relative to the shear zone

boundaries, which we call L. The rotation rate as a function

of L may increase, decrease, it may have a maximum or it

may have a minimum. In more detail we have shown that:

1. For linear viscous materials and very high rheology

contrasts, our results con®rm analytical results for rota-

tion rate for L! 0 and for L� 1. For L! 0 the rotation

rate is _v � 0:5 (Ghosh and Ramberg, 1976; Simpson and

De Paor, 1993) and for L� 1 the rotation rate goes

towards zero (Spry, 1963). There, all the shear imposed

by the boundaries is taken up in deformation of the

object.

2. _v becomes signi®cantly smaller than 0.5 at L . 0.3, even

for objects of high rheology contrast to the matrix. This is

because the strain gets partitioned in the regions near the

shear zone boundaries and the region around the object

behaves like a rigid band in the middle of the grid. This

feature also occurs in non-linear viscous materials.

3. When the shear zone boundaries are maintained at

constant stress, the partitioning of the strain into the

regions near the boundaries competes with an increasing

component of the velocity ®eld in direction normal to the

shear zone boundaries. This competition results in a

maximum of the rotation rate at intermediate object
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Fig. 9. Illustration of differences of the velocity ®eld around objects

(h � 100) as a function of different boundary conditions. The small arrows

are vectors showing direction and magnitude of the velocities relative to the

centre of each porphyroblast. In order to simulate the feel of a ªrealº thin

section, a total of nine identical model calculations were pasted together.

This is allowed because of symmetry reasons. Note however that this ®gure

should not be misinterpreted by inferring velocity gradients across the

continuous lines which separate individual (identical) model runs. Some

obvious differences between the developing fabrics are discussed in the

text. The strain partitioning discussed in Fig. 7 can be seen clearly on

Fig. 9b.



sizes. This effect is particularly pronounced in non-linear

viscous materials.

4. In non-linear viscous materials, the rotation rate may

become _v , 0.5 for L! 0 for all rheology contrasts

h , 100. We suggest that this indicates that h � 100 is

not suf®cient to describe the behaviour of rigid objects.

5. There is a general trend that, with decreasing viscosity

contrast, the shear strain rate of an object increases and

the rotation rate decreases. However, the decrease in

rotation rate is not related directly to the decrease in

the viscosity contrast. For example, objects of h � 2

still have an appreciable rate of rotation. Correspond-

ingly, even at a viscosity contrast of h � 100, objects

still have a signi®cant shear strain rate for some rheolo-

gies and boundary conditions. This is also the cause of

conclusion 2.

6. Quantitative application of our results to real rocks is

dif®cult. However, the results show that there should be

care taken in making generalised interpretations about

the magnitude of rotation rates of porphyroblasts, if the

distance to the effective shear zone boundaries is not

understood. For example, in metamorphic rocks where

garnet growth occurs during deformation, the effective

object size may change, so that that the entire spectrum of

rotation rates that occur between L� 0 and L� 1 may be

found in a single thin section or even in a single crystal.
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